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1 Time-independent perturbation theory

1.1 non-degenerate

Ĥ = Ĥ0 + V̂ , where V̂ is the perturbation.
At V̂ = 0, the problem is exactly solved below.
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1.2 quadratic Stark effect

The polarizability α of an atom is defined in terms of the energy
shift of the atomic state as follow: ∆ = − 1
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H0 = p2

2m + V0(r) and V = −e|E|z (e < 0 for the electron )
The ground state of hydrogen atom is non-degenerate.
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1.3 degenerate spectrum

H0|m(0)〉 = E
(0)
D |m(0)〉

Vmm′ = 〈m(0)|V̂ |m′(0)〉
1. Identify degenerate unperturbed eigenkets and construct the
perturbation matrix [Vmn], a g × g matrix if the degeneracy is
g-fold.
2. Diagonalize the perturbation matrix by solving, as usual, the
appropriate secular equation.
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3. Identify the roots of the secular equation with the first-order
energy shifts; the base kets that diagonalize the V matrix are
the correct zeroth-order kets that the perturbed kets approach
in the limit λ→ 0.
4. For higher orders, use the formulas of the corresponding non-
degenerate perturbation theory except in the summations, where
we exclude all contri- butions from the unperturbed kets in the
degenerate subspace D.
Second order correction:

2 Time-dependent perturbation theory

Interaction picture:
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3 Spherical harmonics and angular momentum

3.1 normalization

The normalization of spherical harmonics varies and here we adopt
the convention in QM:
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3.2 angular momentum operator

J+ = Jx + iJy, J− = Jx − iJy ⇐⇒ Jx = J++J−
2 , Jy = J+−J−

2i
Eigenstate of L and Lz : 〈n̂|l,m〉 = Y ml (θ, φ) = Y ml (n̂)

J±|j,m〉 =
√

(j ∓m)(j ±m+ 1)~|j,m± 1〉
J2|j,m± 1〉 = j(j + 1)~2|j,m± 1〉, Jz|j,m± 1〉 = m~|j,m± 1〉

3.3 parity and conjugate

π̂{θ, φ} → {π − θ, π + φ},
π̂Y ml (θ, φ)→ Y ml (π − θ, π + φ) = (−1)lY ml (θ, φ)
Y m∗l (θ, φ) = (−1)mY −ml (θ, φ)
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4 Spherical operator, Wigner-Eckart Theorem
and selection rule

4.1 tensor operators

T
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4.2 selection rule〈
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unless m′ = q +m and |j − k| ≤ j′ ≤ |j + k|
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