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1 Time-independent perturbation theory

1.1 non-degenerate

H = Hy + V, where V is the perturbation.

At V =0, the problem is exactly solved below.
Holn @) = B ()

H=Hy+ AV

(Ho + AV)[n(A)) = En(A)[n(A))
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where Vi, = (mO|V[n) £ (m|V|n)
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energy shift:

An = En _ E(O) /\E(l) + )\2E(2) .
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1.2 quadratic Stark effect

The polarizability « of an atom is defined in terms of the energy
shift of the atomic state as follow: A = —Za|E|?

Hy = % + WVo(r) and V = —e|E|z (e < 0 for the electron )

The ground state of hydrogen atom is non—degenerate.

Ap = —elElzw + *[E[? Zj;ekEujkilem o
x |<k<0>|z|1,0,0)|

2

ZkaO,OzZ

1.3 degenerate spectrum

Holm®) = B |m()

Vi = (m© [V ]m/©)

1. Identify degenerate unperturbed eigenkets and construct the
perturbation matrix [Vi,,], a g X g matrix if the degeneracy is
g-fold.

2. Diagonalize the perturbation matrix by solving, as usual, the
appropriate secular equation.

det [V~ (B-ER)| =0

3. Identify the roots of the secular equation with the first-order
energy shifts; the base kets that diagonalize the V matrix are
the correct zeroth-order kets that the perturbed kets approach
in the limit A — 0.

4. For higher orders, use the formulas of the corresponding non-
degenerate perturbation theory except in the summations, where
we exclude all contri- butions from the unperturbed kets in the
degenerate subspace D.

Second order correction:

2 Time-dependent perturbation theory

Interaction picture:
o, to;t); = etHot/h |a7t0§t>s7 A= elHOt/hAseﬂHOt/h-
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3 Spherical harmonics and angular momentum

3.1 normalization

The normalization of spherical harmonics varies and here we adopt
the convention in QM: f Y,n . (0,9)Y,™(0, 0)dY = 01y Sy

[ fd= [ do [T fsin(8)dd
[ fda? = 027r d [ db [,° fsin(0)r?dr

3.2 angular momentum operator

Jotdo g Je—Jo
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Jy=Joe+idy, J = J, —idy = J, = F5=,J,
Eigenstate of Land L, : (a|ll,m) =Y;"(0, ¢) = Y™
Jeljom) = /(7 Fm)(j £m +1)hlj,m £ 1)

JjmE1) =G+ DR?jm £ 1), J.|j,m £ 1)

3.3 parity and conjugate
7%{07 ¢} - {71— - 9771— + ¢}7

Y0, ¢) = V" (m — 0,7+ ¢) = (=1)'Y;"(0. ¢)
Ym0, ¢) = (=1)™Y,"™ (6, ¢)
3.4 list of spherical harmonics of low order
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4 Spherical operator, Wigner-Eckart Theorem | 4.2 selection rule
and selection rule <o/,j’m’ Tq(k)‘ a,jm> —0,

unless m' = g+ m and |j — k| < j' < |j + k|

4.1 tensor operators

k m=
Tq( ) = Y q(V)



